Install the platform » Historique » Révision 61
Révision 60 (Arnaud Sevin, 15/02/2017 11:20) → Révision 61/62 (Arnaud Sevin, 15/02/2017 11:21)
{{toc}} h1. Install Anaconda with python2 more info: https://www.continuum.io/downloads#linux h2. Download and installation * wget https://repo.continuum.io/archive/Anaconda2-4.2.0-Linux-x86_64.sh * bash ./Anaconda2-4.2.0-Linux-x86_64.sh * update your .batchrc add anaconda2/bin into the $PATH h2. add more packets To avoid any incompatibility this python modules, it's highly recommended to use the gcc provided with anaconda: * conda install -c compass compass h1. Install MAGMA h2. Why MAGMA ? The MAGMA project aims to develop a dense linear algebra library similar to LAPACK but for heterogeneous/hybrid architectures, starting with current "Multicore+GPU" systems. Unlike CULA, MAGMA propose a dense linear algebra library handling double for free. But MAGMA needs a LAPACK and a BLAS implementation. Actually, we try two options : openBLAS (free, easy to install) and MKL (free, need a registration but better optimized on Intel processors) h2. Configure MAGMA with openBLAS h3. Dependencies : openblas (http://www.openblas.net) First, clone the GIT repository: <pre> git clone https://github.com/xianyi/OpenBLAS.git </pre> compile it: <pre> cd OpenBLAS/ make </pre> install it: <pre> make install PREFIX=$HOME/local/openblas </pre> add to you .bashrc: <pre><code class="PHP"> export OPENBLAS_ROOT=$HOME/local/openblas </code></pre> h3. extraction MAGMA is available here : http://icl.cs.utk.edu/magma/software/index.html extract the tgz file and go into the new directory > ~$ wget http://icl.cs.utk.edu/projectsfiles/magma/downloads/magma-2.2.0.tar.gz > ~$ tar xf magma-2.2.0.tar.gz > ~$ cd magma-2.2.0 h3. configuration You have to create your own make.inc based on make.inc.openblas: > ~$ cp make.inc-examples/make.inc.openblas make.inc example : *please verify GPU_TARGET, OPENBLASDIR, CUDADIR* <pre><code class="PHP"> #////////////////////////////////////////////////////////////////////////////// # -- MAGMA (version 2.2.0) -- # Univ. of Tennessee, Knoxville # Univ. of California, Berkeley # Univ. of Colorado, Denver # @date November 2016 #////////////////////////////////////////////////////////////////////////////// # GPU_TARGET contains one or more of Fermi, Kepler, or Maxwell, # to specify for which GPUs you want to compile MAGMA: # Fermi - NVIDIA compute capability 2.x cards # Kepler - NVIDIA compute capability 3.x cards # Maxwell - NVIDIA compute capability 5.x cards # Pascal - NVIDIA compute capability 6.x cards # The default is "Fermi Kepler". # Note that NVIDIA no longer supports 1.x cards, as of CUDA 6.5. # See http://developer.nvidia.com/cuda-gpus # GPU_TARGET ?= Pascal # -------------------- # programs CC = gcc CXX = g++ NVCC = nvcc FORT = gfortran ARCH = ar ARCHFLAGS = cr RANLIB = ranlib # -------------------- # flags # Use -fPIC to make shared (.so) and static (.a) library; # can be commented out if making only static library. FPIC = -fPIC CFLAGS = -O3 $(FPIC) -DNDEBUG -DADD_ -Wall -fopenmp FFLAGS = -O3 $(FPIC) -DNDEBUG -DADD_ -Wall -Wno-unused-dummy-argument F90FLAGS = -O3 $(FPIC) -DNDEBUG -DADD_ -Wall -Wno-unused-dummy-argument -x f95-cpp-input NVCCFLAGS = -O3 -DNDEBUG -DADD_ -Xcompiler "$(FPIC)" LDFLAGS = $(FPIC) -fopenmp # C++11 (gcc >= 4.7) is not required, but has benefits like atomic operations CXXFLAGS := $(CFLAGS) -std=c++11 CFLAGS += -std=c99 # -------------------- # libraries # gcc with OpenBLAS (includes LAPACK) LIB = -lopenblas LIB += -lcublas -lcusparse -lcudart -lcudadevrt # -------------------- # directories # define library directories preferably in your environment, or here. OPENBLASDIR ?= $(HOME)/local/openblas CUDADIR ?= /usr/local/cuda -include make.check-openblas -include make.check-cuda LIBDIR = -L$(CUDADIR)/lib64 \ -L$(OPENBLASDIR)/lib INC = -I$(CUDADIR)/include \ -I$(OPENBLASDIR)/include </code></pre> h2. Configure MAGMA with MKL h3. extraction To download MKL, you have to create a account here : https://registrationcenter.intel.com/RegCenter/NComForm.aspx?ProductID=1517 extract l_ccompxe_2013_sp1.1.106.tgz and go into l_ccompxe_2013_sp1.1.106 install it with ./install_GUI.sh and add IPP stuff to default choices h3. configuration You have to create your own make.inc based on make.inc.mkl-gcc-ilp64: example: *please verify GPU_TARGET, MKLROOT, CUDADIR* <pre><code class="PHP"> #////////////////////////////////////////////////////////////////////////////// # -- MAGMA (version 2.1.0) -- # Univ. of Tennessee, Knoxville # Univ. of California, Berkeley # Univ. of Colorado, Denver # @date August 2016 #////////////////////////////////////////////////////////////////////////////// # GPU_TARGET contains one or more of Fermi, Kepler, or Maxwell, # to specify for which GPUs you want to compile MAGMA: # Fermi - NVIDIA compute capability 2.x cards # Kepler - NVIDIA compute capability 3.x cards # Maxwell - NVIDIA compute capability 5.x cards # Pascal - NVIDIA compute capability 6.x cards # The default is "Fermi Kepler". # Note that NVIDIA no longer supports 1.x cards, as of CUDA 6.5. # See http://developer.nvidia.com/cuda-gpus # #GPU_TARGET ?= Fermi Kepler # -------------------- # programs CC = icc CXX = icpc NVCC = nvcc FORT = ifort ARCH = ar ARCHFLAGS = cr RANLIB = ranlib # -------------------- # flags # Use -fPIC to make shared (.so) and static (.a) library; # can be commented out if making only static library. FPIC = -fPIC CFLAGS = -O3 $(FPIC) -openmp -DADD_ -Wall -Wshadow -DMAGMA_WITH_MKL FFLAGS = -O3 $(FPIC) -DADD_ -warn all -warn nounused -nogen-interfaces F90FLAGS = -O3 $(FPIC) -DADD_ -warn all -warn nounused NVCCFLAGS = -O3 -DADD_ -Xcompiler "$(FPIC) -Wall -Wno-unused-function" LDFLAGS = $(FPIC) -openmp # Defining MAGMA_ILP64 or MKL_ILP64 changes magma_int_t to int64_t in include/magma_types.h CFLAGS += -DMKL_ILP64 FFLAGS += -integer-size 64 F90FLAGS += -integer-size 64 NVCCFLAGS += -DMKL_ILP64 # Options to do extra checks for non-standard things like variable length arrays; # it is safe to disable all these CFLAGS += -pedantic -Wno-long-long #CFLAGS += -Werror # uncomment to ensure all warnings are dealt with # C++11 (icc >= 13) is not required, but has benefits like atomic operations CXXFLAGS := $(CFLAGS) -std=c++11 CFLAGS += -std=c99 # -------------------- # libraries # IMPORTANT: these link lines are for 64-bit int !!!! # For regular 64-bit builds using 64-bit pointers and 32-bit int, # use the lp64 library, not the ilp64 library. See make.inc.mkl-gcc or make.inc.mkl-icc. # see MKL Link Advisor at http://software.intel.com/sites/products/mkl/ # icc with MKL 10.3, Intel OpenMP threads, 64-bit int # note -DMAGMA_ILP64 or -DMKL_ILP64, and -integer-size 64 in FLAGS above LIB = -lmkl_intel_ilp64 -lmkl_intel_thread -lmkl_core -lpthread -lstdc++ -lm LIB += -lcublas -lcusparse -lcudart # -------------------- # directories # define library directories preferably in your environment, or here. # for MKL run, e.g.: source /opt/intel/composerxe/mkl/bin/mklvars.sh intel64 #MKLROOT ?= /opt/intel/composerxe/mkl #CUDADIR ?= /usr/local/cuda -include make.check-mkl -include make.check-cuda LIBDIR = -L$(CUDADIR)/lib64 \ -L$(MKLROOT)/lib/intel64 INC = -I$(CUDADIR)/include \ -I$(MKLROOT)/include </code></pre> In this example, I use gcc but with MKL, you can use icc instead of gcc. In this case, you have to compile yorick with icc. For this, you have to change the CC flag in Make.cfg h2. compilation and installation h3. compilation just compile the shared target (and test if you want) > ~$ make -j 8 shared sparse-shared h3. installation To install libraries and include files in a given prefix, run: > ~$ make install prefix=$HOME/local/magma The default prefix is /usr/local/magma. You can also set prefix in make.inc. h3. tuning (not tested) For multi-GPU functions, set $MAGMA_NUM_GPUS to set the number of GPUs to use. For multi-core BLAS libraries, set $OMP_NUM_THREADS or $MKL_NUM_THREADS or $VECLIB_MAXIMUM_THREADS to set the number of CPU threads, depending on your BLAS library. h1. Install the platform The COMPASS platform is distributed as a single bundle of CArMA and SuTrA C++ / Cuda libraries and their Python extensions NAGA & SHESHA. h2. Hardware requirements The system must contain at least an x86 CPU and a CUDA capable GPU. list of compatible GPUs can be found here http://www.nvidia.com/object/cuda_gpus.html. Specific requirements apply to clusters (to be updated). h2. Environment requirements The system must be running a 64 bit distribution of Linux with the latest NVIDIA drivers and "CUDA toolkit":https://developer.nvidia.com/cuda-downloads. The following installation instructions are valid if the default installation paths have been selected for these components. Additionally, to benefit from the user-oriented features of the platform, Anaconda2 should be installed (https://www.continuum.io/downloads#_unix). In the last versions of compass (r608+), Yorick is no more supported. h2. Installation process First check out the latest version from the svn repository : <pre> svn co https://version-lesia.obspm.fr/repos/compass/trunk compass </pre> then go in the newly created directory and then trunk: <pre> cd compass </pre> once there, you need to modify system variables in our .bashrc : <pre><code class="PHP"> # CUDA default definitions export CUDA_ROOT=$CUDA_ROOT #/usr/local/cuda export CUDA_INC_PATH=$CUDA_ROOT/include export CUDA_LIB_PATH=$CUDA_ROOT/lib export CUDA_LIB_PATH_64=$CUDA_ROOT/lib64 export PATH=$CUDA_ROOT/bin:$PATH export LD_LIBRARY_PATH=$CUDA_LIB_PATH_64:$CUDA_LIB_PATH:$LD_LIBRARY_PATH </code></pre> in this file, you also have to indicate the proper architecture of your GPU so as the compiler will generate the appropriate code. <pre><code class="PHP"> export GENCODE="arch=compute_52,code=sm_52" </code></pre> and change both 52 to your architecture : for instance a Tesla Fermi will have 2.0 computing capabilities so change 52 to 20, a Kepler GPU will have 3.0 or 3.5 (K20) computing capabilities, change 52 to 30 (or 35), a Maxwell GPU have 5.2 (M6000), a Pascal have 6.0 (P100). (more informations here: https://developer.nvidia.com/cuda-gpus) If you are using CULA, you have to specify it: <pre><code class="PHP"> # CULA default definitions export CULA_ROOT= /usr/local/cula export CULA_INC_PATH= $CULA_ROOT/include export CULA_LIB_PATH= $CULA_ROOT/lib export CULA_LIB_PATH_64= $CULA_ROOT/lib64 export LD_LIBRARY_PATH=$CULA_LIB_PATH_64:$CULA_LIB_PATH:$LD_LIBRARY_PATH </code></pre> If you are using MAGMA, you have to specify it: <pre><code class="PHP"> # MAGMA definitions (uncomment this line if MAGMA is installed) export MAGMA_ROOT=$HOME/local/magma export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MAGMA_ROOT/lib export PKG_CONFIG_PATH=$MAGMA_ROOT/lib/pkgconfig </code></pre> Last variables to define: <pre><code class="PHP"> export COMPASS_ROOT=/path/to/compass/trunk export NAGA_ROOT=$COMPASS_ROOT/naga export SHESHA_ROOT=$COMPASS_ROOT/shesha export LD_LIBRARY_PATH=$COMPASS_ROOT/libcarma:$COMPASS_ROOT/libsutra:$LD_LIBRARY_PATH </code></pre> At the end, you .bashrc shoud containts all those informations: <pre><code class="PHP"> # conda default definitions export CONDA_ROOT=/your/path/anaconda2 export PATH=$CONDA_ROOT/bin:$PATH # CUDA default definitions export CUDA_INC_PATH=$CUDA_ROOT/include export CUDA_LIB_PATH=$CUDA_ROOT/lib export CUDA_LIB_PATH_64=$CUDA_ROOT/lib64 export PATH=$CUDA_ROOT/bin:$PATH export LD_LIBRARY_PATH=$CUDA_LIB_PATH_64:$CUDA_LIB_PATH:$LD_LIBRARY_PATH export GENCODE="arch=compute_52,code=sm_52" # OPENBLAS definitions export OPENBLAS_ROOT=$HOME/local/openblas export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$OPENBLAS_ROOT/lib export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$OPENBLAS_ROOT/lib/pkgconfig PKG_CONFIG_PATH=$OPENBLAS_ROOT/lib/pkgconfig # MAGMA definitions export MAGMA_ROOT=$HOME/local/magma export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MAGMA_ROOT/lib export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$MAGMA_ROOT/lib/pkgconfig PKG_CONFIG_PATH=$MAGMA_ROOT/lib/pkgconfig # COMPASS default definitions export COMPASS_ROOT=/your/path/compass export NAGA_ROOT=$COMPASS_ROOT/naga export SHESHA_ROOT=$COMPASS_ROOT/shesha export LD_LIBRARY_PATH=$COMPASS_ROOT/libcarma:$COMPASS_ROOT/libsutra:$LD_LIBRARY_PATH </code></pre> Once this is done, you're ready to compile the whole library: <pre> make clean all </pre> If you did not get any error, CArMA, SuTrA, NAGA and SHESHA are now installed on your machine. You can check that everything is working by launching a GUI to test a simulation: <pre> ipython -i $SHESHA_ROOT/widgets/widget_ao.py </pre>