calcQTN

G. Le Chat LESIA

CalcQTN does:

- Calculate the quasi-thermal noise of a dipole in the solar wind:
 - Electrons = kappa distribution,
 - Dopler_shiffted Proton noise,
- preview the obtained spectra

CalcQTN doesn't:

• Fit data

Introduction

How to

Demonstration

Introduction

How to

Demonstration

Premade configurations: Demonstration Ulysses/URAP Wind/WAVES STEREO/WAVES RESET	Antenna parameters: antenna length: 10.00
Frequencies Create? Frequencies list (in Hz): Clear	electron density: 5.000 x10^6 m^-3 electron temperature: 1.00 x10^5 K kappa index: 3.00 x10^5 K proton temperature: 1.00 x10^5 K Bulk velocity: 6.00 x10^5 m/s Speed - antenna angle: 90.00 c
Output file name: untitled.txt	Browse Run Show Plot

Introduction

How to

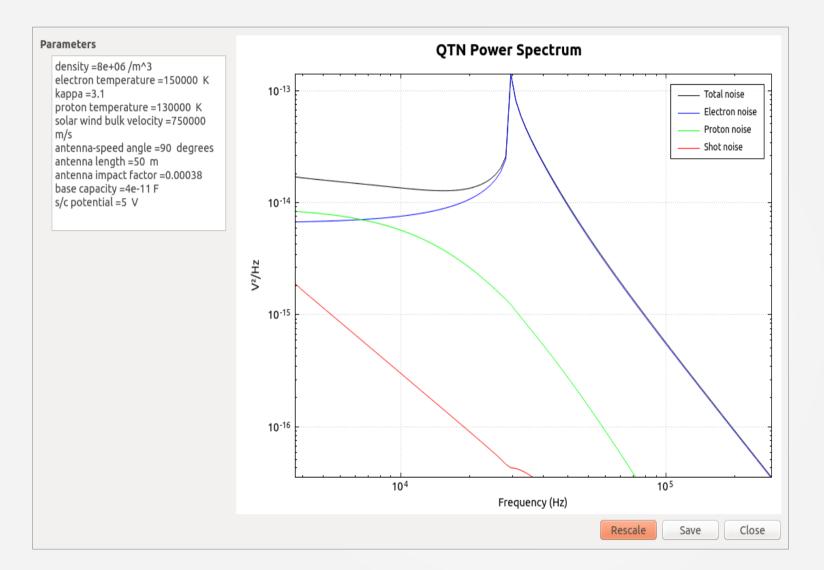
Demonstration

Receiver frequencies: Number of frequencies	þ	÷
Select how to get frequencies	manually given by user linear evenly spaced log-scale evenly spaced	
lowest frequency (in Hz):	0.00	
highest frequency (in Hz):	0.00 <u>C</u> ancel <u>O</u> K	

Introduction

How to

Demonstration


```
/home/glechat/publication/thmr290116/calcQTN/WindSW.txt

#+
#Solar wind quasi-thermal noise power spectra compute from kappa_qtn()
#calculation details can be found in Le Chat et al., Physics of Plasma, 16(10): 102903, 2009
#available at http://www.glechat.fr/publications/LeChatPoP2009.pdf
#Input parameters are:
#density = 8e+06 /m^3
#electron temperature = 150000 K
#kappa = 3.1
#proton temperature = 130000 K
#solar wind bulk velocity = 750000 m/s
#antenna-speed angle = 90 degrees
```

Introduction

How to

Demonstration

