Ongoing work on Wind/TNR with kappa distribution

Gaétan Le Chat LESIA

QTN with a kappa function

- the smaller κ and the longer the antenna, the higher the resonance peak
- for long antenna, high frequency part only depends on n_e and T_e
- => better T_e measurements

Le Chat et al., PoP, 2009

Introduction

Methods

Results

Comparison with sum of Maxwell's distributions

Le Chat et al., SW12, 2010

Introduction

Comparison with sum of Maxwell's distributions

Ulysses/URAP 64 data points:

Much better accuracy for T_e with κ function

Le Chat et al., SW12, 2010

Wind/Waves/TNR data

Thermal Noise Receiver:

- 2 analogic receiver (TNR A, TNR B)

	TNRA	TNRB
Combinaison 1	E _x	E,
Combinaison 2	Ex	Ez
Combinaison 3	Ey	Ex
Combinaison 4	E _y	Ez

- 5 bands of 16 or 32 frequencies in

logarithm scale

16→
$$f = f_{min} \times 2^{i/8}, 0 \le i \le 16$$

32→ $f = f_{min} \times 2^{i/16}, 0 \le i \le 32$

5

Wind/Waves/TNR data

Thermal Noise Receiver:

- bloc acquisition within each band during integration time = 1.472s/n (n = 1,2,4,8)
- usually integration time = 1.472s (Low Bit rate) or 0.736s (High Bit Rate)

- S/C spin = 20 rpm => T ~ 3s

Within the integration time, the angle between Ex antenna and Vsw varies from $\sim 0^{\circ}$ to $\sim 90^{\circ}$

Introduction

Methods

Results

Fitting Wind/Waves/TNR data

0°

5°

Within the integration time, the angle between Ex antenna and Vsw varies from $\sim 0^{\circ}$ to $\sim 90^{\circ}$

Results

Methods

Introduction

Discussion

$$\frac{1}{90^{\circ}} \frac{5^{\circ}}{10^{\circ}} VP_{wind}^{2}(f) = \frac{1}{\Delta t} \int_{0}^{\Delta t} VP^{2}(f, \theta(t)) dt$$

$$\frac{1}{20^{\circ}} \frac{1}{30^{\circ}} VP_{wind}^{2}(f) \approx VP^{2}(f, [45^{\circ} - 90^{\circ}])$$

$$\frac{1}{45^{\circ}} \frac{1}{20^{\circ}} \frac{1}{20^{\circ}}$$

log frequency (HZ)

Fitting Wind/Waves/TNR data

Within the integration time, the angle between Ex antenna and Vsw varies from $\sim 0^{\circ}$ to $\sim 90^{\circ}$

$$VP_{wind}^{2}(f) = \frac{1}{\Delta t} \int_{0}^{\Delta t} VP^{2}(f, \theta(t)) dt$$
$$VP_{wind}^{2}(f) \approx VP^{2}(f, [45^{\circ} - 90^{\circ}])$$

Introduction

Methods

Results

Fitting Wind/Waves/TNR data

Introduction

Methods

Results

Exemple

Mon Jun 19 09:57:10 1995

Methods

Results