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Solar wind:
● evolution of thermal and non thermal 

properties of the solar wind
● transport of particles and energy in non 

equilibrium plasmas
● origins, acceleration and links to the 

solar corona

Interplanetary dust:
● second half of the mass flux in the 

solar system
● interactions with the solar wind
● Proxy for other phenomena: interstellar 

dust, origin of the solar system, 
collisions, motion of the solar system...
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Large Scale Properties of the 
Solar Wind
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Le Chat et al., ApJ, 2014

Issautier, Le Chat et al., GRL, 2008
Ulysses data
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● BATS-R-US : MHD-3D model of solar corona and 
wind plasma and magnetic field

● Rotation Faraday (RF) : a magnetized plasma rotates 
the plane of polarization of radio waves

● 1st comparisons between MHD model and RF 
● Fast (1 Carrington rotation) evolution of corona 

RF map even in solar minimum
● Provides unique test of the model
● Measures the same decrease in the solar wind 

parameters than Ulysses
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The Solar Wind Energy Flux
W [W m−2

]=ρV ( 1
2

V 2
+

Mo G

Ro )

{ {

kinetic energy 
leave the Sun’s gravitational potential

● Slow and fast wind: different sources, 
different expansion factors of their flux 
tubes, different interaction… but same 
energy flux

● Same energy flux => Semi-empirical 
Relation between Speed and Density.

● Stellar wind of cool giants and solar-type 
star: same order of magnitude for the 
energy flux.
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Le Chat et al., CSSS15, 2009 ; Le Chat et al., Solar Physics, 2012
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Supra-Thermal Electrons
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Maxwellian

Power 
lawKappaf(v)
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● Coulomb collisions => lpm ∝ v4

● Fast particles not in equilibrium, even if core 
of the distribution is in equilibrium

● Acceleration processes often produce power 
law distributions

⇒Velocity distributions in space plasmas are expected to be:
● Close to Maxwellian at low energies
● Close to power-law at high energies

Nicholls et al. 2012
● Kappa functions: 

● Simple mathematical functions 
● Good approximations of the 

expected and observed velocity 
distributions in space plasmas
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Quasi-thermal noise 
spectroscopy
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● Few collisions ⇒ supra-thermal electron in power law distributions  ⇒ accurate 
measurements of their kinetic properties needed = quasi-thermal noise 
spectroscopy with kappa functions

Thermal noise spectrum
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Antenna response to electrostatic 
waves

Auto-correlation function of the 
electrostatic field fluctuations in 

the antenna frame

Electrons quasi-thermal noise  + 
Doppler-shifted proton thermal noise 
+ shot noise

Le Chat et al., PoP, 2009
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Large-Scale Variation of Solar 
Wind Electron Properties
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T e∝R−0.53±0.15
κ=cste

Ulysses/URAP in high latitude fast solar wind:
● Very good accuracy for the electrons density and total temperature.
● Temperature variation between adiabatic (γ = 5/3) and isothermal (γ = 1).     Te 

∝ ne γ−1 , γ = 1.27 ± 0.07. 
● Highly supra-thermal distribution with constant kappa index.
● These observations agree with the predictions of the exospheric theory.
● Solar Orbiter and Solar Probe Plus radio instruments will provide a larger 

distance range.
Le Chat et al., 2009 ; 2010 ; 2011

N e∝ R−1,96±0.08
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Quasi-thermal noise in 
anisotropic plasmas
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Tong et al., AGU 2015
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Work in progress!

● Anisotropy important in the solar wind 
(competition between conservation of the 
adiabatic invariant and Coulomb collisions, 
driver of instability…)

● Strahl measurements on Solar Probe Plus 
might rely upon quasi-thermal noise 
spectroscopy

To do so
● need to describe all the effects due to the 

change direction between the antenna and 
solar wind

● and the effect of the spacecraft spin
Wind/WAVES is ideal to test this before SO 
and SPP launches



Interplanetary nanoparticles
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Meyer-Vernet et al, 2010 Meyer-Vernet et al, 2015Le Chat et al., 2013
●  Nanoparticles accelerated by the solar wind:
 in situ measurements feasible with radio instrument
● Detection mechanism by STEREO/WAVES 

(Pantellini et al., 2013) + analysis algorithm of 
the spectral density (Le Chat et al., 2013):
● Analysis of 10 millions of radio spectra: 

statistical study of nanodust properties and 
their evolutionDiscovery of nanodust at 1 AU: 

fundamental result in the study of interplanetary dust
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Interplanetary nanoparticles

11Le Chat et al., 2015

Context

Solar Wind

Nanoparticles

Conclusions

Effect of transient events on nanodust:
● Transient events (ICMEs and SIRs) 

change the dynamic behavior of 
already released nanodust

● Nanodust accelerated by the a focusing 
interplanetary magnetic field (IMF) 
with a speed close to the ICMEs' one 
allowed the dust to interact with the 
plasma and magnetic field of the 
ICME, leading to the observed higher 
nanodust fluxes

● Also explains the absence of nanodust 
observed within ICMEs outside 
focusing  IMF configuration



Interplanetary nanoparticles
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Effect of Mercury and Venus on the 
dust flux:
● Nanodust flux observed by STEREO-

A at 1 AU may be influenced by 
Venus and Mercury

● Both planets increase the number of 
nanoparticles in the interplanetary 
medium. Might be cause by the 
encounter with regions of higher 
interplanetary dust density, such as 
cometary trails.

● Hot spots on the surface of Mercury 
might be releasing dust into the 
interplanetary medium when 
illuminated by the Sun

● Similar behavior observed for nanodust 
in the Saturn magnetosphere

Le Chat et al., 2015



Future Works
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Solar Wind Measurements:
● Wind/WAVES/TNR L3 database
● Electron temperature anisotropy and strahl measurements
● Paving the road to Solar orbiter and Solar Probe Plus

Nanodust:
● Simulation of nanodust dynamic within ICMEs
● Planetary effects on nanodust: comparative study with Saturn magnetosphere
● Mass and angular momentum losses of stellar system from nanoparticles pickup 

by stellar winds (i.e. accretion disks)
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