
Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

GPU Computing - CUDA
A short overview of hardware and programing model

Pierre Kestener1

1CEA Saclay, DSM, Maison de la Simulation

Saclay, June 12, 2012
Atelier AO and GPU

1 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

Content

Short historical view

Main differences between CPU and GPU

CUDA Hardware : differences with CPU
CUDA software abstraction / programing model

SIMT - Single Instruction Multiple Thread
Memory hierarchy

OpenCL ??

2 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

Summary

1 Historical perspective

2 CUDA Hardware / Software

3 CUDA Code walkthrough

4 OpenCL

3 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

GPU evolution: before 2006, i.e. CUDA

GPU == dedicated hardware for graphics pipeline

GPU main function : off-load graphics task from CPU to GPU

GPU: dedicated hardware for specialized tasks

“All processors aspire to be general-purpose.”
– Tim Van Hook, Graphics Hardware 2001

2000’s : shaders (programmable functionalities in the graphics
pipeline) : low-level vendor-dependent assembly, high-level Cg,
HLSL, etc...

Legacy GPGPU (before CUDA, ∼ 2004), premises of GPU computing

The Evolution of GPUs for General Purpose Computing,
par Ian Buck
http://www.nvidia.com/content/GTC-2010/pdfs/2275_GTC2010.pdf

4 / 37

http://www.nvidia.com/content/GTC-2010/pdfs/2275_GTC2010.pdf

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

Floating-point computation capabilities in GPU ?

Floating point computations capability implemented in
GPU hardware

IEEE754 standard written in mid-80s

Intel 80387 : first floating-point coprocessor IEEE754-compatible

Value = (−1)S ×M ×2E , denormalized, infinity, NaN; rounding
algorithms quite complex to handle/implement

FP16 in 2000

FP32 in 2003-2004 : simplified IEEE754 standard, float point
rounding are complex and costly in terms of transistors count,

CUDA 2007 : rounding computation fully implemented for + and * in
2007, denormalised number not completed implemented

CUDA Fermi : 2010 : 4 mandatory IEEE rounding modes;
Subnormals at full-speed (Nvidia GF100)

links:
http://homepages.dcc.ufmg.br/~sylvain.collange/talks/raim11_scollange.pdf

5 / 37

http://homepages.dcc.ufmg.br/~sylvain.collange/talks/raim11_scollange.pdf

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

GPU computing - CUDA hardware - 2006

CUDA : Compute Unified Device Architecture
Nvidia Geforce8800, 2006, introduce a unified architecture (only one
type of shader processor)

first generation with hardware features designed with GPGPU in
mind: almost full support of IEEE 754 standard for single precision
floating point, random read/write in external RAM, memory cache
controlled by software

CUDA ==
new hardware architecture +
new programming model/software abstraction (a C-like
programming language + development tools : compiler, SDK,
librairies like cuFFT)

6 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

Summary

1 Historical perspective

2 CUDA Hardware / Software

3 CUDA Code walkthrough

4 OpenCL

7 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

From multi-core CPU to manycore GPU

Architecture design differences between manycore GPUs and general
purpose multicore CPU ?

Different goals produce different designs:
CPU must be good at everything, parallel or not
GPU assumes work load is highly parallel

8 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

From multi-core CPU to manycore GPU

Architecture design differences between manycore GPUs and general
purpose multicore CPU ?

CPU design goal : optimize architecture for sequential code
performance : minimize latency experienced by 1 thread

sophisticated (i.e. large chip area) control logic for instruction-level
parallelism (branch prediction, out-of-order instruction, etc...)
CPU have large cache memory to reduce the instruction and data
access latency

9 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

From multi-core CPU to manycore GPU

Architecture design differences between manycore GPUs and general
purpose multicore CPU ?

GPU design goal : maximize throughput of all threads
threads in flight limited by resources => lots of resources (registers,
bandwidth, etc.)
multithreading can hide latency => skip the big caches
share control logic across many threads

10 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

From multi-core CPU to manycore GPU

Architecture design differences between manycore GPUs and general
purpose multicore CPU ?

GPU takes advantage of a large number of execution threads to find
work to do when other threads are waiting for long-latency memory
accesses, thus minimizing the control logic required for each
execution thread.

11 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

Nvidia Fermi hardware (2010)

Streaming Multiprocessor (32 cores), hardware control, queuing
system

GPU = scalable array of SM (up to 16 on Fermi)

warp: vector of 32 threads, executes the same instruction in
lock-step

throughput limiters: finite limit on warp count, on register file, on
shared memory, etc...

12 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

Nvidia Fermi hardware (2010)

Streaming Multiprocessor (32 cores), hardware control, queuing
system

GPU = scalable array of SM (up to 16 on Fermi)

warp: vector of 32 threads, executes the same instruction in
lock-step

throughput limiters: finite limit on warp count, on register file, on
shared memory, etc...

13 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

Nvidia Fermi hardware (2010)

CUDA Hardware (HW) key concepts

Hardware thread management
HW thread launch and monitoring
HW thread switching
up to 10 000’s lightweight threads

SIMT execution model

Multiple memory scopes
Per-thread private memory : (register)
Per-thread-block shared memory
Global memory

Using threads to hide memory latency

Coarse grained thread synchronization

14 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

CUDA - connecting program and execution model

Need a programing model to efficiently use such hardware; also
provide scalability

Provide a simple way of partitioning a computation into fixed-size
blocks of threads

15 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

CUDA - connecting program and execution model

Total number of threads must/need be quite larger than number of
cores
Thread block : logical array of threads, large number to hide latency
Thread block size : control by program, specify at runtime, better be
a multiple of warp size (i.e. 32)

16 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

CUDA - connecting program and execution model

Must give the GPU enought work to do ! : if not enough thread
blocks, some SM will remain idle
Thread grid : logical array of thread blocks distribute work among
SM, several blocks / SM
Thread grid : chosen by program at runtime, can be the total number
of thread / thread block size or a multiple of # SM

17 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

CUDA : heterogeneous programming

heterogeneous systems : CPU and
GPU have separated memory
spaces (host and device)

CPU code and GPU code can be in
the same program / file
(pre-processing tool will perform
separation)

the programmer focuses on code
parallelization (algorithm level) not
on how he was to schedule blocks
of threads on multiprocessors.

18 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

CUDA : heterogeneous programming

Current GPU execution flow

reference: Introduction to CUDA/C, GTC 2012

19 / 37

http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/S0624-Monday-Introduction-to-CUDA-C.pdf

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

CUDA : heterogeneous programming

Current GPU execution flow

reference: Introduction to CUDA/C, GTC 2012

20 / 37

http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/S0624-Monday-Introduction-to-CUDA-C.pdf

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

CUDA : heterogeneous programming

Current GPU execution flow

reference: Introduction to CUDA/C, GTC 2012

21 / 37

http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/S0624-Monday-Introduction-to-CUDA-C.pdf

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

CUDA : programming model (PTX)

a block of threads is a CTA
(Cooperative Thread Array)

Threads are indexed inside a block;
use that index to map memory

write a program once for a thread

run this program on multiple
threads

block is a logical array of threads
indexed with threadIdx (built-in
variable)

grid is a logical array of blocks
indexed with blockIdx (built-in
variable)

22 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

Summary

1 Historical perspective

2 CUDA Hardware / Software

3 CUDA Code walkthrough

4 OpenCL

23 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

CUDA C/C++

CUDA C/C++
Large subset of C/C++ language
CPU and GPU code in the same file; preprocessor to filter GPU specific
code
Small set of extensions to enable heterogeneous programming: new
keywords
A runtime/driver API

Memory management: cudaMalloc, cudaFree, ...
Device management: cudaChooseDevice, probe device properties (# SM,
amount of memory , ...)
Event management: profiling, timing, ...
Stream management: overlapping CPU-GPU memory transfert with
computations, ...
...

Terminology
Host: CPU and its memory
Device: GPU and its memory

24 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

CUDA Code walkthrough

Data parallel model

Use intrinsic variables threadIdx and blockIdx to create a
mapping between threads and actual data

25 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

CUDA Code walkthrough

Data parallel model

Use intrinsic variables threadIdx and blockIdx to create a
mapping between threads and actual data

26 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

CUDA memory hierarchy: software/hardware

hardware (Fermi) memory hierarchy
on chip memory : low latency, fine granularity, small amount
off-chip memory : high latency, coarse granularity (coalescence
constraint, ...), large amount
shared memory: kind of cache, controlled by user, data reuse inside a
thread block
need practice to understand how to optimise global memory
bandwidth

27 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

CUDA memory hierarchy: software/hardware

software memory hierarchy
register : for variables private to a thread
shared : for variables private to a thread block, public for all thread
inside block
global : large input data buffer

28 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

Performance tuning thoughts

Threads are free
Keep threads short and balanced
HW can (must) use LOTs of threads (10s thousands) to hide memory
latency
HW launch ⇒ near zero overhead to create a thread
HW thread context switch ⇒ near zero overhead scheduling

Barriers are cheap
single instruction: _syncthreads();
HW synchronization of thread blocks

Get data on GPU, and let them there as long as possible

Expose parallelism: give the GPU enough work to do

Focus an data reuse: avoid memory bandwidth limitations

ref: M. Shebanon, NVIDIA

29 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

Other subjective thoughts

tremendous rate of change in hardware from cuda 1.0 to 2.0 (Fermi)
and coming 3.0 (Kepler)

CUDA HW version Features
1.0 basic CUDA execution model
1.3 double precision, improved memory accesses,

atomics
2.0 (Fermi) Caches (L1, L2), FMAD, 3D grids, ECC,

P2P (unified address space), funtion pointers, recursion
3.5 (Kepler GK110) 1 Dynamics parallelism, object linking,

GPU Direct RemoteDMA, new instructions,
read-only cache, Hyper-Q

memory constraint like coalescence were very strong in cuda HW 1.0
⇒ large perf drop in memory access pattern was not coaslescent

Obtaining functional CUDA code can be easy but optimisation
might require good knowledge of hardware (just to fully
understand profiling information)

1as seen in slides CUDA 5 and Beyond from GTC2012
30 / 37

http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/S0641-GTC2012-CUDA-5-Beyond.pdf

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

Summary

1 Historical perspective

2 CUDA Hardware / Software

3 CUDA Code walkthrough

4 OpenCL

31 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

GPU computing - OpenCL

OpenCL == Open Computing Language

standard http://www.khronos.org, version 1.0 (12/2008)

focus on portability: programming model for GPU (Nvidia/ATI),
multicore CPU and other: Data and task parallel compute model

OpenCL programming model use most of the abstract concepts of
CUDA: grid of blocks of threads, memory hierarchy, ...

32 / 37

http://www.khronos.org

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

GPU computing - OpenCL

OpenCL language based on C99 with restrictions
Some difficulties:

HW vendor must provide their OpenCL implementation; AMD is
leading with OpenCL 1.2
multiple SDK with vendor specific addons ⇒ breaks portability
Both CUDA and OpenCL provide rather low-level API; but OpenCL’s
learning curve is steeper at first. Lots of low level code to handle
different abstract concepts: plateform, device, command queue, ...;
Need to probe hardware, ...

33 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

GPU computing - OpenCL

OpenCL language based on C99 with restrictions

Some difficulties:
architecture-aware optimisation breaks portability: NVIDIA and
AMD/ATI hardware are different ⇒ require different optimisation
strategy

34 / 37

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

GPU computing - OpenCL

porting a CUDA program to OpenCL :
http://developer.amd.com/documentation/articles/pages/OpenCL-and-the-ATI-Stream-v2.0-Beta.aspx#four

tools to automate conversion CUDA/OpenCL: SWAN, CU2CL (a
CUDA to OpenCL source-to-source translator)

other tools: MCUDA (a CUDA to OpenMP source-to-source
translator)

35 / 37

http://developer.amd.com/documentation/articles/pages/OpenCL-and-the-ATI-Stream-v2.0-Beta.aspx#four
http://www.multiscalelab.org/swan
http://eprints.cs.vt.edu/archive/00001161/01/CU2CL.pdf
http://impact.crhc.illinois.edu/mcuda.aspx

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

GPU computing - OpenCL

Quick / partial comparison of CUDA / OpenCL; see
GPU software blog by Acceleyes

Performance: both can fully utilize the hardware; but might be
hardware dependant (across multiple CUDA HW version), algorithm
dependent, etc ... Use benchmark SHOC to get an idea.
Portability: CUDA is NVIDIA only (but new LLVM toolchain, also
Ocelot provides a way from PTX to other backend targets like
x86-CPU or AMD-GPU); OpenCL is an industry standard (run on
AMD, NVIDIA, Intel CPU)
Community: larger community for CUDA; HPC supercomputer with
NVIDIA hardware; Significantly larger number of existing
applications in CUDA
Third party libraries: NVIDIA provides good starting points for FFT,
BLAS or Sparse linear algebra which makes their toolkit appealing at
first.
Other hardware: some embedded device applications in OpenCL
(e.g. Android OS); CUDA will probably be used for Tegra apps; CUDA
toolkit for ARM (project MontBlanc)

36 / 37

http://blog.accelereyes.com/blog/2012/02/17/opencl_vs_cuda_webinar_recap/
https://github.com/spaffy/shoc/wiki

Historical perspective
CUDA Hardware / Software

CUDA Code walkthrough
OpenCL

CUDA - documentation and usefull links

SuperComputing SC2011, slides: CUDA C BASICS,
Performance Optimization (by P. Micikevicius)

toolkit doc: PTX_ISA, CUDA_C_Programming_Guide, etc ...

about coming new Kepler architecture: Kepler whitepaper

37 / 37

http://www.nvidia.com/docs/IO/116711/sc11-cuda-c-basics.pdf
http://www.nvidia.com/docs/IO/116711/sc11-perf-optimization.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

	Historical perspective
	CUDA Hardware / Software
	CUDA Code walkthrough
	OpenCL

